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Abstract

Indoor chemistry may be initiated by reactions of ozone (O3), the hydroxyl radical (OH), or the 

nitrate radical (NO3) with volatile organic compounds (VOC). The principal indoor source of O3 

is air exchange, while OH and NO3 formation are considered as primarily from O3 reactions with 

alkenes and nitrogen dioxide (NO2), respectively. Herein, we used time-averaged models for 

residences to predict O3, OH, and NO3 concentrations and their impacts on conversion of typical 

residential VOC profiles, within a Monte Carlo framework that varied inputs probabilistically. We 

accounted for established oxidant sources, as well as explored the importance of two newly 

realized indoor sources: (i) the photolysis of nitrous acid (HONO) indoors to generate OH and (ii) 

the reaction of stabilized Criegee intermediates (SCI) with NO2 to generate NO3. We found total 

VOC conversion to be dominated by reactions both with O3, which almost solely reacted with D-

limonene, and also with OH, which reacted with D-limonene, other terpenes, alcohols, aldehydes, 

and aromatics. VOC oxidation rates increased with air exchange, outdoor O3, NO2 and D-limonene 

sources, and indoor photolysis rates; and they decreased with O3 deposition and nitric oxide (NO) 

sources. Photolysis was a strong OH formation mechanism for high NO, NO2, and HONO 

settings, but SCI/NO2 reactions weakly generated NO3 except for only a few cases.
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1. Introduction

Indoor volatile organic compounds (VOCs) are oxidized by ozone (O3), the hydroxyl radical 

(OH), or the nitrate radical (NO3). Indoor chemistry research has mostly focused on O3/

terpene reactions, both because O3 is easy to generate, manipulate, and measure compared to 

OH and NO3 and because terpenes are emitted indoors by building materials and consumer 

products and are often present at significant indoor concentrations (Baumann et al., 1999; 

Logue et al., 2011; Singer et al., 2006; Toftum et al., 2008). Also, since O3/terpene reaction 

rate constants are about 10−4–10−2 ppb−1 h−1, when viewed within the context of typical 

indoor O3 concentrations of ~1–50 ppb, reactions with terpenes compete with loss due to air 

exchange and influence indoor pollutant loadings (Atkinson and Arey, 2003; Weschler, 

2000).

While OH/ and NO3/terpene reaction rate constants are generally four to five orders of 

magnitude faster, typical indoor OH concentrations (~10−7–10−5 ppb) and NO3 

concentrations (~10−6–10−3 ppb) suggest terpenes may react meaningfully with NO3 as well 

as O3 but that reactions of terpenes with OH are too slow to influence terpene conversion for 

most settings (Nazaroff and Weschler, 2004; Nojgaard, 2010). However, impacts of all three 

of these oxidants should be considered because OH and NO3 can react with many VOCs, in 

contrast with alkene-only O3 reactions (Atkinson and Arey, 2003). Therefore, the purpose of 

this work is to challenge the (perhaps implicit) assumption of a limited indoor reaction 

scheme based mostly on O3 and NO3 reactions with terpenes (and alkenes) and explore total 

VOC conversion by O3, OH, and NO3 in typical indoor environments.

Excellent reviews and investigative research on indoor oxidants are available (e.g. Carslaw, 

2007; Drakou et al., 2000; Nazaroff and Weschler, 2004; Sarwar et al., 2002; Weschler, 

2000, 2011; Weschler and Shields, 1996, 1997). We recount a brief distillation of this 

literature regarding the influence of O3, OH, and NO3 on VOC conversion and indoor 

chemistry due to gas-phase reactions. After that, we discuss some new, possibly influential 

advances in our understanding of sources of oxidants indoors, for both OH and NO3. 

Finally, we use a modeling analysis within a Monte Carlo framework to estimate the 

magnitudes and determinants of gas-phase conversion rates of VOCs due to O3, OH, and 

NO3 in typical residences, and explore the impacts of both the established and newer sources 

of these oxidants.

1.1. Established background on O3, OH, and NO3 sources and reactions

The initiator and main driver of indoor chemistry is O3, which is largely the result of 

outdoor-to-indoor transport, and indoor O3 concentrations are often 20–70% of ambient 

values (Weschler, 2000). Ozone reacts in the gas-phase with alkenes, or it reacts 

heterogeneously with building materials or surface-sorbed alkenes, such as squalene or 

monoterpenes (Atkinson and Arey, 2003; Springs et al., 2011; Wang and Morrison, 2006; 

Wang and Waring, 2014; Waring and Siegel, 2013; Wells et al., 2008; Weschler, 2000; 

Wisthaler and Weschler, 2010). However, we focus explicitly on gas-phase oxidation of 

VOCs. Reaction rates of O3 and indoor-emitted terpenoids have been widely studied, for 

instance with D-limonene, α- and β-pinene, terpinolene, γ-terpinene, α-terpineol, linalool, 
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and dihydromyrcenol, among others (e.g. Arey et al., 1990; Atkinson, 1990; Atkinson et al., 

1990, 1992b; Forester et al., 2006; Grosjean and Grosjean, 1999; Wells, 2005).

The O3 reacts with the alkene at the carbon double bond following the so-called Criegee 

mechanism, forming a primary ozonide that cleaves to yield a carbonyl and an excited 

Criegee intermediate (CI*), also known as a carbonyl oxide (Atkinson and Arey, 2003; 

Criegee, 1975). That CI* is either quenched to form a stabilized Criegee intermediate (SCI) 

that may react with water or an oxygenated organic (the ‘SCI channel’); or it can rearrange 

to form an excited hydroperoxide and then decompose to form an alkyl radical (R•) and OH 

(the ‘hydroperoxide channel’) (Atkinson and Aschmann, 1993; Atkinson et al., 1992a; Kroll 

and Seinfeld, 2008). These O3/alkene reactions are considered the main driver of indoor OH 

concentrations; due to their short lifetimes, outdoor-to-indoor transport of OH radicals is not 

a strong indoor source (Carslaw, 2007; Sarwar et al., 2002; Weschler and Shields, 1996).

OH/VOC reactions lead to the formation of alkyl radicals, alkoxy radicals (RO•), peroxy 

radicals (RO2•) and other species which transform by decomposition, isomerization, or 

hydrolysis, leading to the formation of oxygenated compounds, such as alcohols, carbonyls, 

carboxylic acids, and hydroxycarbonyls (Atkinson and Arey, 2003; Finlayson-Pitts and Pitts, 

2000; Forester et al., 2007; Kroll and Seinfeld, 2008; Orlando and Tyndall, 2012; Orlando et 

al., 2003; Wells, 2005). Oxygenated organics formed by O3 or OH reactions can be acute or 

chronic irritants, and they can sorb to surfaces, oxidize further, contribute to aerosol 

formation, or be removed by air exchange (Aalto-Korte et al., 2005; Anderson et al., 2007, 

2012; Bein and Leikauf, 2011; Jakubowski and Czerczak, 2010; Jarvis et al., 2005; Kroll 

and Seinfeld, 2008; Weschler, 2011). The quantification of OH indoors is challenging, but 

OH has been predicted or measured at ~10−7–10−5 ppb (Carslaw, 2007; Sarwar et al., 2002; 

Weschler and Shields, 1996, 1997). OH-driven chemistry could play a minor role in 

terpenoid conversion indoors (Nazaroff and Weschler, 2004), however a recent investigation 

by Carslaw (2013) suggests that OH and O3 contribute more or less equally to D-limonene 

oxidation.

NO3 is also formed by O3 reactions, but in this case from O3 reacting with NO2 to yield 

NO3 and O2 (Atkinson et al., 1992b; Nazaroff and Cass, 1986; Weschler et al., 1994). After 

formation, the NO3 and remaining NO2 are in equilibrium with dinitrogen pentoxide 

(N2O5), which can also react with water to form nitric acid (HNO3) indoors (Weschler et al., 

1994). NO3/VOC reactions yield alkyl, alkoxy, and peroxy radicals, and stable carbonyls 

and oxygenated compounds that may contain organic nitrate groups (Ham, 2013; Harrison 

and Ham, 2010; Harrison and Wells, 2012; Jones and Ham, 2008). Organic nitrates are 

‘under investigated’, but research on health effects and indoor NOx cycles have emphasized 

the need for more research (Carslaw, 2007; Carslaw et al., 2012). Like OH, NO3 is difficult 

to measure; however, modeling and inference experiments have estimated concentrations 

with an upper bound of ~10−3 ppb (Nojgaard, 2010; Weschler et al., 2006). An average 

NO3/terpenoid reaction rate constant of ~103 ppb−1 h−1 suggests that NO3/terpenoid 

chemistry could impact indoor air (Flemmer and Ham, 2012; Ham, 2013; Harrison and 

Ham, 2010; Jones and Ham, 2008; Nazaroff and Weschler, 2004).
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1.2. Recent advances on OH and NO3 sources

Recent measurements by Alvarez et al. (2013) have identified photolysis of HONO, which is 

formed from combustion or NO2 hydrolysis on indoor surfaces (Finlayson-Pitts et al., 2003; 

Girman et al., 1982; Spicer et al., 1993; Traynor et al., 1982), as a source of indoor OH. 

Previously, it was assumed that actinic light fluxes indoors attenuating through windows 

were not strong enough to photolyze HONO. However, to test for this source, OH, O3, NO2, 

NO and HONO concentrations, relative humidity, and the actinic light flux were monitored 

over time in a classroom setting (Alvarez et al., 2013). HONO photolyzes at wavelengths of 

≤405 nm, and light in the range of 340–405 nm was measured. The authors demonstrated 

that larger calculated HONO photolysis rates corresponded to observed increases in OH. 

The Alvarez et al. (2013) experiments suggest the possibility of enhanced OH/VOC 

chemistry in settings with high concentrations of HONO and/or NO2 and large indoor 

actinic fluxes, as also recently discussed by Gligorovski and Weschler (2013).

As discussed above, O3/alkene reactions form stabilized Criegee intermediates (SCI). While 

the SCI has been an accepted species for nearly 40 years (Criegee, 1975), its indoor reactive 

chemistry is now being purposefully investigated. Lifetimes of tens of minutes are estimated 

for SCIs formed from ozonolysis of alkenes, which implies the possibility of CI*-driven 

chemistry being influential indoors beyond the ‘hydroperoxide channel’ OH formation 

pathway (Mauldin et al., 2012). The SCI has been shown to oxidize sulfur dioxide (SO2) to 

sulfuric acid (H2SO4), an important species for outdoor particulate matter formation, and 

also to oxidize NO2 to NO3, which would represent a new source of this radical indoors 

(Mauldin et al., 2012; Ouyang et al., 2013; Taatjes et al., 2013; Welz et al., 2012). 

Consideration of these new sources of OH and NO3 implies that NO2 may play an even 

more important and central role in the oxidation of VOCs indoors than previously 

recognized.

2. Modeling methodology

This section uses the reaction information outlined previously to develop modeling to 

explore the magnitudes and source strengths of O3, OH, and NO3 in residential spaces, as 

well as the magnitudes and determinants of typical VOC conversion rates by those oxidants. 

Regarding the new sources discussed above, we include OH due to photolysis of HONO 

generated by deposition of NO2 to indoor surfaces or from emissions of gas-fired 

appliances, as well as NO3 formation due to SCI reactions. Since the focus of this paper is 

on gas-phase VOC conversion, we ignore the SCI reactions with indoor SO2 to yield H2SO4, 

as well as products of surface reactions (with the exception of NO2 deposition to yield 

HONO).

2.1. Time-averaged model

A time-averaged model was developed to predict the concentrations of O3, OH, NO3, NO, 

NO2, HONO, N2O5, and SCI, based on the 20 reactions in Table 1. Time-averaged 

equations compute long-term average values and accommodate periodically cycling inputs 

that are considered as average values (El Orch et al., 2014; Nazaroff and Klepeis, 2003; 

Riley et al., 2002). Our model is admittedly a simplified representation of the true kinetics 
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and is not explicit. Explicit or semi-explicit models are less appropriate for this type of 

many-case screening work due to their computational intensity and are better suited for deep 

investigation (e.g. Carslaw, 2007, 2013; Carslaw et al., 2012; Sarwar et al., 2002, 2003). 

Other researchers have used models of complexity similar to ours with good success. 

Weschler and Shields (1996) predicted a typical OH value at 6.7 × 10−6 ppb with a non-

explicit model, while Sarwar et al. (2002) with their semi-explicit model predicted OH to be 

within 0.5% of the Weschler and Shields (1996) concentration for the same model inputs.

To predict O3, OH, NO3, NO, NO2, HONO, N2O5, and SCI concentrations, eight time-

averaged, mass balances for residences were written, which assume the indoor air is a single 

well-mixed control volume with air exchange due to a combination of infiltration and 

natural ventilation. Recirculation air exchange was not considered since we neglect losses 

within the mechanical system. Some studies have suggested that O3 can be removed with 

efficiencies of <~10% by filters in mechanical air handling systems, but these were either 

conducted with airflow at very low face velocities in laboratory settings or exhibited low O3 

removal (mean removal of <2%) in field settings with single-stage filters (Hyttinen et al., 

2003; Zhao et al., 2007). Sorption of VOCs to indoor surfaces is dynamic and not included.

For brevity, we only illustrate a general form of the mass balances used in this work. Time-

averaged equations are similar to steady state equations (El Orch et al., 2014; Nazaroff and 

Klepeis, 2003; Riley et al., 2002), and they are the ratio of the pollutant sources and losses, 

as demonstrated for a generic pollutant concentration, Ci (ppb), in Equation (1):

(1)

where γ (h−1) is the air exchange rate; pi is the penetration factor of i through the building 

envelope; Ci,o (ppb) is the outdoor i concentration; Ei (μg/h) is the emission rate of i; V (m3) 

is the building volume; Γi is a conversion factor to change units from μg/m3 to ppb for i; βi 

(h−1) is the deposition rate of i; and RS,i and RL,i are source and loss chemical reactions for i, 

respectively. The reaction terms depend on the pollutant i but may include gas- or surface-

phase reactions, photolysis, or dissociation (see Table 1).

Using the predicted concentrations of O3, OH, or NO3, which are CO3, COH, and CNO3 
(ppb), respectively, the total conversion rate by each oxidant (ox) for all VOCs indoors can 

be determined by multiplying the respective oxidant concentration, Cox (ppb), by the sum of 

the products of each VOC concentration j, Cj (ppb), and its reaction rate constant with that 

VOC, kj·ox (ppb−1 h−1). That is:

(2)

Equation (2) gives an indication of the total effect of an oxidant on indoor gas-phase VOC 

chemistry, rather than focusing on conversion of a few particular pollutants, such as terpenes 

alone.
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2.2. Monte Carlo method and model input parameters

The model equations were used in four Monte Carlo operations, which run repeated cases of 

random sampling from probability distributions for input parameters to obtain output 

distributions, allowing the statistical influence of inputs on results to be quantified. The 

different Monte Carlo sets considered four residential spaces with different emission 

scenarios, called R1–R4, including:

• R1: stable indoor background VOCs and variable outdoor O3 and NOx 

concentrations

• R2: stable indoor background VOCs, variable outdoor O3 and NOx concentrations, 

and variable indoor D-limonene concentrations

• R3: stable indoor background VOCs, variable outdoor O3 and NOx concentrations, 

and variable indoor emissions of NOx and HONO

• R4: stable indoor background VOCs, variable outdoor O3 and NOx concentrations, 

variable indoor D-limonene concentrations, and variable indoor emissions of NOx 

and HONO.

We ran 10,000 unique cases for each of the four sets, for which the time-averaged equations 

were solved simultaneously with an in-house numerical solution program written in the 

statistical programming software Stata version 11 (StataCorp LP, College Station, TX, 

USA). Input parameters were best estimates from the literature. Depending on the input 

parameter type and/or its certainty, some were inputted as single values and some as 

probability distributions in the Monte Carlo operations.

For reaction rate constants, one value was used based on an indoor temperature of 25 °C 

(ASHRAE, 2013). Those rate constants are listed in Table 1 for all but the VOC reactions 

with O3, OH, and NO3. Gas-phase reaction rate constants involving oxidation of NOx and 

HONO species except for SCI reactions (i.e., Reactions 3–9, 11–13, and 18) were from 

Atkinson et al. (1992b), while the deposition rate of NO2 with indoor surfaces (Reactions 14 

and 15) and the HONO photolysis rates were inputted as distributions (described below). 

NO2 reacts on surfaces with water to produce HONO and NO, and surface production rates 

were from Spicer et al. (1993). That study reported a value for HONO, but not for NO, so 

we assumed the same value for NO as HONO production for NO2 deposition. Gas-phase 

reactions and rates for SCIs were as in Welz et al. (2012). Due to uncertainty for SCIs from 

O3/alkene reactions, we ignored SCI unimolecular decomposition, so the SCI results may be 

thought of as an upper bound.

Total VOC oxidation rates by O3, OH, and NO3 were determined by summing the products 

of reaction rate constants and median VOC concentrations for typical profiles in residences. 

The residential VOC concentrations are from Logue et al. (2011), who compiled 91 median 

concentrations from different studies, and those are listed in the Supplementary Information 

(SI) in Table S1. Also listed in Table S1 are the oxidant/VOC reaction rate constants, which 

are from Atkinson and Arey (2003) and the Master Chemical Mechanism v3.2 (Bloss et al., 

2005; Jenkin et al., 1997, 2003; Saunders et al., 2003), and molar yields for OH from 

Weschler and Shields (1996). Additionally, the penetration of O3 through the building 
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envelope was modeled as constant, starting with the mean value from Stephens et al. (2012) 

of 0.8 but increasing it to 0.9 because some air exchange in residences is through open 

windows. The water vapor concentration was set for a relative humidity of 50% at 25 °C.

The Monte Carlo operations used input distributions for the residential air exchange rate and 

house volume, outdoor O3 and NOx concentrations, HONO photolysis rates, deposition rates 

of O3 and NO2 to surfaces, indoor emissions of NO, NO2, and HONO, and indoor D-

limonene concentrations. These parameter distributions were represented as lognormal. 

Table 2 lists their geometric means (GM) and geometric standard deviations (GSD) and 1st 

and 99th percentiles.

The air exchange rates, γ (h−1), were fits to values from the Relationship of Indoor, Outdoor 

and Personal Air (RIOPA) study, which was conducted in the cities of Elizabeth, NJ, 

Houston, TX, and Los Angeles, CA (Weisel et al., 2005). For R2 and R4 cases, the D-

limonene concentration, Clim (ppb), distribution was estimated according to the ranges in the 

RIOPA study (Weisel et al., 2005), as used in Waring (2014), but truncated so the 

concentration was never less than the median background D-limonene concentration (2.5 

ppb). For R3 and R4 cases, the residential house volume, V (m3), was estimated from the 

U.S. American Housing Survey (USBC, 2011) and used with emission rates for a gas-fired 

burner of NO (89.2 mg/h), NO2 (136 mg/h) and HONO (3.50 mg/h) from Girman et al. 

(1982) to determine volume normalized emission rates (ENO/V, ENO2/V, and EHONO/V), 

considering the burner was used for two hours per day.

The outdoor O3 concentration (CO3,out) distribution was the fit of O3 data from all EPA 

monitoring stations across the U.S. for 2012 (EPA, 2013). The distributions for the outdoor 

NOx concentrations were determined from EPA monitoring data for which there was 

concurrently available concentrations of NO2, CNO2,out (ppb), and NOx, CNOx,out (ppb). 

Using those concentrations, we calculated distributions for CNOx,out and the ratio of outdoor 

NO2 to NOx, i.e., CNO2,out/CNOx,out. Then for each modeling case, the CNO2,out was 

determined as CNOx,out × (CNO2,out/CNOx,out), and the CNO as (CNOx,out – CNO2,out).

The distribution for the O3 deposition rate, βO3 (h−1), was from Lee et al. (1999) and 

Morrison et al. (2011), and the GM for the NO2 deposition rate, βNO2 (h−1), was from Spicer 

et al. (1993) and assumed as having the same GSD as βO3. Surface deposition rates of 

radicals OH, NO3, and SCI were all assumed as having the OH base value of 7.06 h−1 from 

Weschler and Shields (1996) and were varied correspondingly to the O3 surface deposition 

rate distribution. The HONO photolysis rate, JHONO (h−1), was estimated from Alvarez et al. 

(2013), with the GM being the value observed during all times except for in cases of direct 

light and the 99th percentile being double their maximum observed value (to represent 

extremely lit rooms). We want to note that this distribution was taken from one study the 

literature, so there may be some uncertainty in its range; however, we chose this range to 

explore its potential impact fully.
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3. Results and discussion

3.1. Oxidant concentrations and source strengths

Fig. 1a shows box plots of the log10 of oxidant concentrations for the four Monte Carlo sets. 

The boxes show the 25th to 75th percentiles, the median is the line in the box middle, the 

whiskers are values within 1.5 multiplied by the range of the box, and outliers beyond this 

range are small circles. For O3, R1 and R2 cases were similar, and concentrations were 

between 0.70 and 16 ppb for 10th and 90th percentiles; R3 and R4 were similar and that 

same range fell to 0.058–11 ppb. These O3 concentrations are lower than in Lee et al. 

(2002), who measured a mean of 14.9 ppb, though their outdoor concentrations were much 

higher at an average of 56.5 ppb. Over all cases, the OH range for the same percentiles was 

between 4.8 × 10−7 and 8.0 × 10−6 ppb; for NO3, the range was between 2.3 × 10−8 and 7.1 

× 10−5 ppb. The O3 and OH correspond well to those in previous measurements or modeling 

(Avol et al., 1998; Sarwar et al., 2002; Weschler, 2000; Weschler and Shields, 1996), but 

NO3 is lower than has been suggested by Weschler et al. (2006) and Nojgaard (2010) and is 

more aligned with concentrations predicted by Carslaw (2007).

The stove emissions in R3 and R4 had a much larger influence on the O3 concentrations 

than on the OH or the NO3 concentrations. The R3 and R4 sets had the lowest average O3 

concentrations because the NO emitted by the gas-fired stove is a dominant O3 sink. For R1 

versus R2, the variable D-limonene concentration had little impact on O3 overall, since the 

surface reaction and air exchange losses were more important. The OH concentrations were 

relatively stable across Monte Carlo sets, but showed a slight trend of R2 > R4, which were 

both greater than R1 and R3, since there were more O3/D-limonene reactions in R2 and 

because OH was formed due to HONO photolysis in R4. The median NO3 concentration 

was the greatest for R1, since there was more O3 available to react with NO2, though the 

upper range was higher for R3 for cases with concomitantly high outdoor O3 and NO2 

emission.

To explore the relative impacts of the different OH and NO3 formation mechanisms, we 

show box plots of the distributions of the fractional contribution of each source in Fig. 2. For 

OH, the sources are (i) alkene ozonolysis or (ii) HONO photolysis. For R1 and R2, the 

majority OH source was usually alkene ozonolysis, though HONO photolysis had a sizeable 

impact and sometimes dominated. The source strengths in R1 and R2 had similar 

distributions, with differences due to larger R2 D-limonene concentrations. However, for R3 

and R4, HONO photolysis was the chief OH source due to the stove use that emitted HONO 

directly as well as emitted NOx, which led to NO2 surface deposition and additional HONO 

formation indoors. When interpreting this result, please keep in mind that some of our 

scenarios included values for JHONO from high light fluxes. Regardless, this work shows 

that this source and its impacts on indoor chemistry deserve serious field investigation in 

residences with gas appliances.

We also explored the relative source strengths of NO3 formed by (i) O3/NO2 reactions, (ii) 

dissociation of N2O5 that was formed by NO3/NO2 reactions, or (iii) SCI/NO2 reactions. For 

NO3 in sets R1–R4, most all formation was due to O3/NO2 reactions. The N2O5 dissociation 

was sometimes important in all four sets as well, though it was the strongest in R3 because 
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of high NO2 due to stove use and subsequent high formation rates of N2O5, concurrent with 

the lowest O3/VOC reaction rates. Due to the high D-limonene in R2 and R4 sets that led to 

more SCI formation, the source of NO3 due to SCI reactions with NO2 was important for a 

small number of cases in those sets alone, implying that the SCI source may not be that 

influential for NO3 formation in many environments. Shallcross et al. (2014) predicted that 

high alkene concentrations in the 100 s ppb were necessary for the SCI source to approach 

the relative impact of the O3/NO2 source. Correspondingly, in R2 and R4, for SCI source to 

be responsible for ≥0.3 of the NO3, the D-limonene concentration was always ≥108 ppb. D-

Limonene concentrations such as these or higher can be reached during cleaning events 

(Singer et al., 2006).

3.2. Total VOC conversion rates

A good metric for an oxidant's influence on indoor chemistry is its total VOC oxidation rate 

(i.e., as in Equation (2)), and an oxidant's generic impact on concentrations can be first-order 

approximated by dividing the oxidation rate by the air exchange rate. That is, for an air 

exchange rate of 0.5 h−1, a total VOC oxidation rate of 0.1 ppb/h would increase generic 

products by 0.2 ppb. Thus, VOC oxidation rates much lower than this will have little 

influence on product concentrations. We plotted the log10 of the VOC oxidation rates for 

sets R1–R4 in Fig. 1b. Results illustrate that OH oxidation is as important as O3 oxidation, 

and in R3 and R4 sets with NOx emissions, the VOC conversion due to O3 is actually lower 

than for OH since O3 reacts strongly with NO. Both have ranges for 25th to 75th percentiles 

between ~0.01 and 1 ppb/h, and their top 25th percentiles are between ~1 and 100 ppb/h. 

The VOC oxidation rates by NO3 are roughly an order of magnitude lower than those for O3 

or OH, suggesting that NO3 reactions only influence indoor VOC conversion for a small 

subset of results.

Fig. 1b shows distributions for all 10,000 results for the Monte Carlo sets. However, due to 

the nature of the outdoor photochemical cycle, it is unlikely that high outdoor O3 is 

concomitant with high outdoor NO and NO2. Typically, in the morning high NO and NO2 

are coincident with low O3, and in the afternoon this trend is reversed (Seinfeld and Pandis, 

2006). To explore these parameter combinations, Fig. 1c and d plot high outdoor O3/low 

outdoor NOx cases and low outdoor O3/high outdoor NOx cases, respectively; i.e., cases 

where the distribution of the ratio of CO3,out/CNOx,out was >90th percentile or <10th 

percentile, respectively. The VOC oxidation by O3, OH, and even NO3 was higher in Fig. 1c 

over d, since indoor oxidative chemistry is driven by O3. Moreover, when outdoor O3 is low 

and NOx is high, OH/VOC oxidation dominates. For NO3, the highest rates of VOC 

conversion are for sets R3 and R4 with the large NOx stove emissions for the high outdoor 

O3/low outdoor NOx cases.

Fig. 3 shows scatter plots of the VOC oxidation rates as functions of indoor concentrations 

of O3, NO, and NO2 for R2 and R4. These plots are useful to discern how the oxidative 

capacity of residences is affected by changes in O3 and NOx concentrations, which are 

highly variable. Only 100 cases for each Monte Carlo set are displayed so that trends are 

discernible. In Fig. 2a and d for both sets, VOC oxidation rates by O3 and NO3 are always 

positively correlated to CO3; OH is strongly correlated to CO3 for R2 but only weakly for 
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R4, due to the source of OH from photolysis of the HONO in R4. In Fig. 2b and e, all VOC 

oxidation rates for R2 are uncorrelated to CNO, yet for R4 those by O3 and NO3 oxidation 

are negatively correlated since NO in R4 is high and it is a large O3 sink. The VOC 

oxidation by OH is mostly uncorrelated to CNO for R4, which is logical since it was 

uncorrelated to CO3. For Fig. 2c and f, the only correlations are between VOC oxidation 

rates by NO3 with CNO2 for R2, since there are higher concentrations of O3 to react with 

NO2 to yield NO3.

3.3. Determinants of oxidant concentrations and total VOC conversion rates

Figs. 1–3 were useful to discern general trends regarding the oxidant concentrations and 

VOC conversion rates in our results. To explore determinants of the results quantitatively, 

we conducted a sensitivity analysis. To do so, a multiple linear regression was applied to 

oxidant concentrations and VOC conversion results for each Monte Carlo set, after natural 

log-transforming the outcome and predictor variables, which yielded a better fit than 

regressing non-transformed variables. The predictor variables used in the regressions were 

{β, CO3,out, βO3, CNO,out, CNO2,out, βNO2, JHONO, Clim, ENOY/V}, where ENOY/V (μg/m3 h) is 

the sum of ENO/V, ENO2/V, and EHONO/V. The resulting coefficients of determination for all 

24 regressions were R2 = 0.72–0.95, with a mean (standard deviation) R2 = 0.88 (0.070). We 

only present and discuss R2 and R4.

For our sensitivity analysis, Table 3 lists the standardized regression coefficients (SRC) for 

R2 and R4 regressions, and their actual regression coefficients are in Table S2 in the SI. The 

SRC is the actual coefficient normalized by the ratio of the sample standard deviations of the 

dependent to independent variables. SRCs range from −1 to +1, unless there is a high degree 

of multicollinearity among the predictor variables (Deegan, 1978), and are useful to 

compare the relative importance of model inputs on the outcome: a high |SRC| indicates a 

large influence on the outcome, while a |SRC| near zero indicates no influence, and an input 

with a −SRC changes the outcome negatively and a +SRC changes the outcome positively. 

The SRCs for any inputs can be compared, either within one or across different regressions, 

to quantitatively assess their relative impacts. To aid in the interpretation of SRC results, in 

Table 3 the SRCs over |0.1| (which are the most influential on the outcome variables) are 

bolded; also, the greatest positive and negative SRC for each regression is underlined.

We focus on SRCs for the VOC oxidation rates by O3, OH, and NO3. The largest +SRCs for 

VOC oxidation rates by O3 or OH are for inputs of air exchange rate (λ) and outdoor O3 

(CO3,out) and indoor D-limonene (Clim) concentrations, since increases in λCO3,out directly 

increase O3 concentrations and the reactions of O3/D-limonene increase O3 oxidation rates 

while forming OH. However, VOC oxidation by NO3 is increased by the sources of λCO3,out 

and λCNO2,out but much less by Clim, since increasing D-limonene reduces indoor O3 and 

NO3 formation from ozonolysis of NO2. The parameter JHONO had a large positive 

influence for OH/VOC oxidation in R4, due to the photolysis of stove-emitted NO, NO2, 

and HONO, though JHONO is less meaningful in R2 without indoor emissions. The largest 

−SRCs for R2 are for O3 deposition rates (βO3), since this parameter reduces the O3 that is a 

dominant component of the sources of all oxidants. For R4 for OH/VOC oxidation, the 
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largest −SRC was also βO3; however, for O3/and NO3/VOC oxidation, it was the stove 

emission (ENOY/V) since the emitted NO reduces O3.

3.4. VOCs most oxidized by O3, OH, and NO3 and subsequent products

To contextualize the influences of oxidant/VOC conversion rates on product formation, 

Table 4 lists for O3, OH, and NO3 the ten most oxidized VOCs for the background 

residential condition, as well as the percentage that each contributes to total VOC oxidation 

(determined by dividing oxidant-specific VOC reaction rates by the total of that for all 

VOCs, i.e., (kj-oxCj)/(Σ(kj-oxCj))). For instance, 68% of all O3 reactions are with D-limonene. 

Generally, Table 4 demonstrates that D-limonene is the most oxidized VOC by all oxidants; 

that monoterpenes are largely responsible for O3 and NO3 reactions; and that OH reactions 

are more varied and favor the oxidation of a few monoterpenes, as well as alcohols, 

aldehydes, aromatics, and isoprene.

Thus, O3 almost solely reacts with terpenoids, accounting for an average of 99% of O3 

reactions in residences, again with 68% to D-limonene. Since previous analysis demonstrated 

that O3/VOC conversion is important for many settings, the products of D-limonene and α-

pinene ozonolysis are likely often elevated. These products include very reactive species 

such as CI*s and SCIs, as well as OH and hydrogen peroxide and other reactive oxygen 

species (Chen and Hopke, 2010; Li et al., 2002). Stable products include oxygenated 

organics such as formaldehyde, 4-acetyl-1-methylcyclohexene, limona ketone, and 

limonaldehyde (Grosjean et al., 1992; Rohr, 2013). Limonene ozonolysis strongly forms 

secondary organic aerosol (SOA) (Zhang et al., 2006; Waring et al., 2011; Youssefi and 

Waring, 2014), and Waring (2014) argued that SOA formation in residences could comprise 

a sizeable fraction of indoor aerosols when O3 and D-limonene concentrations were high and 

air exchange rates were low.

Similarly, NO3 reacts mostly with D-limonene at 59% and also with other monoterpenes. 

NO3/terpene oxidation is dominated by NO3 addition to the unsaturated C=C bond(s), which 

forms alkyl, alkoxy, and peroxy radicals before ultimately generating nitrated peroxides, 

carbonyls, and alcohols and SOA (Bolzacchini et al., 2001; Calogirou et al., 1999; Carslaw 

et al., 2012; Spittler et al., 2006). Jones and Ham (2008) identified those types of nitrated 

oxygenated products for NO3/α-terpineol reactions, as well as identified acetone, glyoxal, 

methyl glyoxal, and others. However, according to the results in Fig. 1b–d, NO3/VOC 

oxidation is about an order of magnitude less influential than for O3 or OH (except for R3 

and R4 with indoor NOx and HONO emissions), so terpene oxidation and product formation 

will be typically more driven by O3 or OH than NO3 in most settings.

OH oxidizes a much richer suite of VOC types than either O3 or NO3 in the typical 

residence herein. OH/D-limonene reactions are still important, though less dominating than 

for O3 or NO3. The OH/terpene reactions generate formaldehyde, acetone, and other 

carbonyls, as well as larger oxygenated compounds that form SOA (Grosjean et al., 1992; 

Leungsakul et al., 2005; Wisthaler et al., 2001). Reactions with alcohols are also a dominant 

OH pathway, leading to carbonyls such as acetaldehyde and propanal or carboxyl acids such 

as acetic acid (Azad and Andino, 1999). Also, OH/aldehyde reactions yield hydroperoxyl 

and peroxyl radicals, as well as acylperoxy radicals, which in the presence of NO2 can form 
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peroxyacyl nitrates (PAN). OH reactions with toluene can yield peroxy and hydroperoxy 

radicals, as well as dicarbonyls, cresol, alcohols, and SOA (Bloss et al., 2005; Jang and 

Kamens, 2001; Jenkin et al., 1997, 2003; Saunders et al., 2003).

4. Conclusions

This study investigated the proportional contribution of VOC oxidation indoors by O3, OH, 

and NO3 within typical residences, by using a Monte Carlo-driven modeling effort with 

time-averaged equations. The model considered established oxidant sources, as well as 

newly recognized sources of OH and NO3 indoors, including OH formation due to HONO 

photolysis and NO3 formation due to SCI reactions with NO2. Our model results 

demonstrated that OH formation due to photolysis could be important relative to alkene 

ozonolysis, and even be dominant in residences with stove use. The formation of NO3 by 

SCI chemistry was not a substantial source for most indoor settings, with some exceptions 

occurring with high D-limonene concentrations. The VOC oxidation rates by O3, OH, and 

NO3 very generally increased with air exchange, outdoor O3 and NO2 concentrations, indoor 

D-limonene, and HONO photolysis; and they decreased with O3 deposition and NO sources.

For our inputs, indoor VOC oxidations rates were dominated by O3 and OH reactions for 

most settings, though high stove emissions reduced O3 importance due to scavenging of O3 

by emitted NO. VOC oxidation by NO3 was about an order of magnitude less influential 

than O3 or OH. When outdoor O3 was high and NOx was low, VOC oxidation rates by O3 

and OH were very similar, but when outdoor O3 was low and NOx was high, OH/VOC 

oxidation was the stronger of the two. For O3 and NO3, reactions with D-limonene dominate 

the oxidation pathways; for OH, reactions with terpenes, alcohols, aldehydes, and aromatics 

were all common indoors. The products most likely to increase indoors due to VOC 

oxidation are from O3 and OH reactions, and they are various radicals, reactive oxygen 

species, carbonyls, carboxylic acids, alcohols, and SOA species.
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HIGHLIGHTS

• Impacts of O3, OH, and NO3 on indoor residential VOC conversion were 

modeled.

• Time averaged equations were used in Monte Carlo modeling for four settings.

• New and established sources of radical oxidants were considered in the 

modeling.

• Total VOC conversion was dominated by ozonolysis and OH reactions, and not 

NO3.

• Source of OH by HONO photolysis was strong, but NO3 by NO2 + SCI 

reactions was not.
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Fig. 1. 
Box plots of (a) CO3, COH, and CNO3 for the different Monte Carlo sets R1–R4; (b) VOC 

oxidation rate by each oxidant for all cases within each set; (c) VOC oxidation rate by each 

oxidant for high outdoor O3 and low outdoor NOx cases only; (d) VOC oxidation rate by 

each oxidant for low outdoor O3 and high outdoor NOx cases only. See text for more details.
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Fig. 2. 
Box plots of fractions contribution of various OH and NO3 sources considered in the 

modeling, for the residential R1–R4 settings. For OH, source ‘O3’ is O3/alkene reactions; 

‘JHONO’ is HONO photolysis. For NO3, source ‘O3’ is O3/NO2 reactions; ‘Dis’ is 

dissociation of N2O5; ‘SCI’ is SCI/NO2 reactions.
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Fig. 3. 
Scatter plots of the VOC oxidation by O3, OH, and NO3 versus CO3, CNO, and CNO2, over 

the R2 and R4 Monte Carlo sets (showing the first 100 cases only for plot clarity).
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Table 1

Reactions considered in the time-averaged model and their rate constants.

No. Reaction Rate constant Source

1 O3 + alkenei → intermediates → OH + SCI + products Table S1 1

2 OH + VOCi → products Table S1 1

3 O3 + NO → NO2 + O2 kNO–O3 = 1.6 ppb–1 h–1 2

4 O3 + NO2 → NO3 + O2 kNO2–O3 = 0.0028 ppb–1 h–1 2

5 OH + NO + M → HONO + M kNO–OH = 2800 ppb–1 h–1 2

6 OH + NO2 + M → HONO2 + M kNO2–OH = 5300 ppb–1 h–1 2

7 OH + NO3 → HO2 + NO2 kNO3–OH = 2000 ppb–1 h–1 2

8 OH + OH → H2O + O kOH–OH = 170 ppb–1 h–1 2

9 OH + O3 → HO2 + O2 kO3–OH = 6.0 ppb–1 h–1 2

10 NO3 + VOCi → products Table S1 1

11 NO3 + NO → 2NO2 kNO–NO3 = 2300 ppb–1 h–1 2

12 NO3 + NO2 → N2O5 kNO2–NO3 = 180 ppb–1 h–1 2

13 N2O5 → NO3 + NO2 kN2O5(d) = 250 h–1 2

14 2NO2
(g) + H2O(aq) → HONO(aq) + H+ + NO3

− Table 2 and kNO2·surf(HONO) = 0.055 h–1 3

15 NO2
(g) + HONO(aq) → H+ + NO3

− + NO Table 2 and kNO2·surf(NO) = 0.055 h–1 3

16 HONO(aq) ↔ HONO(g) Not considered in time-averaged model

17 HONO + hv → OH + NO Table 2 4

18 OH + HONO → H2O + NO2 kHONO-OH = 430 ppb–1 h–1 2

19 SCI + NO2 → NO3 + products kNO2–SCI = 600 ppb–1 h–1 5

20 SCI + H2O → products kH2O–SCI = 0.0089 ppb–1 h–1 5

1. Oxidant/VOC reaction rates are from Atkinson and Arey (2003) and the Master Chemical Mechanism v3.2. See the Supplementary Information 
for specific information.

2. Atkinson et al., 1992b.

3. Spicer et al., 1993.

4. Alvarez et al., 2013.

5. Welz et al., 2012.
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Table 2

Lognormal parameters (GM = geometric mean; GSD = geometric standard deviation) for input distributions 

used in the Monte Carlo analysis, as well as their 1st and 99th percentiles.

Parameter GM GSD 1st percentile 99th percentile

λ
a
 (h–1)

0.75 2.1 0.128 4.17

CO3,out
b
 (ppb)

25.5 2.31 3.74 142

CNOx,out
b
 (ppb)

6.42 3.52 0.349 116

CNO2,out / CNOx,out
b
 (ppb)

0.704 1.41 0.309 0.987

JHONO
c
 (h–1)

0.2 2.5 0.0239 0.905

βO3
d,e

 (h–1)
2.5 1.5 1.08 6.30

βNO2
f
 (h–1)

1.18 1.5 0.513 2.94

V
g

 (m3)
387 1.5 153 967

Clim
h
 (ppb)

2.5 3.5 2.54 59.0

a
Weisel et al. (2005).

b
EPA (2013), monitoring data for 2012.

c
Alvarez et al. (2013).

d
Lee et al. (1999).

e
Morrison et al. (2011).

f
Spicer et al. (1993).

g
USBC (2011).

h
Estimated from Waring (2014), with distribution truncated for concentrations less than 2.5 ppb.
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Table 4

Ranking of the ten most important background VOCs for O3, OH, and NO3 loss in residences and the 

percentage of O3, OH, and NO3 loss for which those VOCs are responsible.

Rank O3/VOCi % O3 loss
a OH/VOCi % OH loss

b NO3/VOCi % NO3 loss
c

1 D-Limonene 68% D-Limonene 24% D-Limonene 59%

2 α-Pinene 26% Ethanol 16% α-Pinene 26%

3 3-Carene 3.3% Formaldehyde 9.7% 3-Carene 12%

4 Isoprene 1.2% 2-Butanol 9.1% β-Pinene 1.0%

5 β-Pinene 0.44% α-Pinene 6.5% Isoprene 0.96%

6 Styrene 0.38% Acetaldehyde 6.2% Styrene 0.48%

7 2-Carene 0.17% Isoprene 4.1% Ethanol 0.33%

8 1,3-Butadiene 0.061% Hexanal 3.4% 2-Carene 0.20%

9 Crotonaldehyde 0.033% 3-Carene 3.4% 2-Butanol 0.074%

10 Acrolein 0.014% Toluene 1.6% Acetaldehyde 0.037%

a
Total loss rate for O3 to VOCs was 6.6 × 10–2 h–1.

b
Total loss rate for OH to VOCs was 1.5 × 105 h–1.

c
Total loss rate for NO3 to VOCs was 4.5 × 103 h–1.
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